

CLASS : XIIth DATE : SUBJECT : MATHS DPP NO. : 1

Topic :-matrices

1.	If $A = [a_{ij}]_{m \times n}$ is a matrix of rank r and B is a) B is invertible b) B is not invertible c) B may or may not be invertible d) None of these	a square submatrix of or	der <i>r</i> + 1, then
2.	If A is square matrix, A', is its transpose, then $\frac{1}{2}(A - A')$ is		
	a) A symmetric matrix c) A unit matrix	b) A skew-symmetric d) An elementary mat	
3.	Inverse of the matrix $A = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$ is a) $\frac{1}{10} \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$ b) $\frac{1}{10} \begin{bmatrix} 4 & 2 \\ -3 & 1 \end{bmatrix}$	c) $\begin{bmatrix} 4 & 2 \\ -3 & 1 \end{bmatrix}$	d) $\frac{1}{10}\begin{bmatrix} 4 & -2\\ -3 & 1 \end{bmatrix}$
4.	Let A be a matrix of rank r.Then, a) rank $(A^T) = r$ b) rank $(A^T) < r$	c) rank $(A^T) > r$	d)None of these
5.	The adjoint matrix of $\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ is a) $\begin{bmatrix} 4 & 8 & 3 \\ 2 & 1 & 6 \\ 0 & 2 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$	c) $\begin{bmatrix} 11 & 9 & 3 \\ 1 & 2 & 8 \\ 6 & 9 & 1 \end{bmatrix}$	d) $\begin{bmatrix} 1 & -2 & 1 \\ -1 & 3 & 3 \\ -2 & 3 & -3 \end{bmatrix}$
6.	If a matrix A is such that $3A^3 + 2A^2 + 5A + a) - (3A^2 + 2A + 5)$ b) $3A^2 + 2A + 5$	-	
7.	Let $A = [a_{ij}]_{n \times n}$ be a square matrix, and let a) $ C = A $ b) $ C = A ^{n-1}$		
8.	The system of equations $x + y + z = 0$, $2x + a$) A unique solution; $x = 0$, $y = 0$, $z = 0$ c) No solutions		

9. If
$$2X - \begin{bmatrix} 7 & 2 \\ 7 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 0 & -2 \end{bmatrix}$$
, then *X* is equal to
a) $\begin{bmatrix} 7 & 2 \\ 7 & 4 \end{bmatrix}$ b) $\begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$ c) $\begin{bmatrix} 2 & 2 \\ 7 & 2 \\ 1 \end{bmatrix}$ d) None of these
10. Let $A = \begin{bmatrix} 1 \\ -5 & 2 \\ 1 \end{bmatrix}$ and $A^{-1} = xA + yI$, then the values of *x* and *y* are
a) $x = -\frac{1}{11}$, $y = \frac{2}{11}$ b) $x = -\frac{1}{11}$, $y = -\frac{2}{11}$ c) $x = \frac{1}{11}$, $y = \frac{2}{11}$ d) $x = \frac{1}{11}$, $y = -\frac{2}{11}$
11. Let *A* and *B* be two symmetric matrices of same order. Then, the matrix *AB* - *BA* is
a) *A* symmetric matrix b) *A* skew-symmetric matrix
c) *A* null matrix d) The identity matrix
12. If $A = \begin{bmatrix} 1 & x \\ x^2 & 4y \end{bmatrix} a$, $B = \begin{bmatrix} -3 & 1 \\ 1 & 0 \end{bmatrix}$ and adj $A + B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then the values of *x* and *y* are
respectively
a) (1, 1) b) (-1, 1) c) (1, 0) d) None of these
13. Let *p* is a non-singular matrix such that $1 + p + p^2 + \dots + p^n = O$ (*O* denotes the null matrix),
then p^{-1} is
a) p^n b) $-p^n$ c) $-(1 + p + \dots + p^n)$ d) None of these
14. If $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{40} \begin{bmatrix} 5 & 10 & -5 \\ 15 & -2 & 13 \\ 10 & -4 & 6 \end{bmatrix} \begin{bmatrix} 5 \\ 15 \\ 5 \\ 5 \end{bmatrix}$, then the value of $x + y + z$ is
a) 3 b) 0 c) 2 d) 1
15. The matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 \end{bmatrix}$ is the matrix reflection in the line
a) $x = 1$ b) $x + y = 1$ c) $y = 1$ d) $x = y$
16. If $\begin{bmatrix} 1 & -\tan \theta \\ 1 & -1 \\ -\tan \theta & 1 \end{bmatrix} \begin{bmatrix} -1 \\ -\tan \theta \\ 1 \end{bmatrix} = \begin{bmatrix} a & -b \\ 0 \\ -a \\ -2 & 1 \end{bmatrix}$, then adj *A* is equal to
a) *A* b) *A'* c) $3A$ d) $3A'$
18. Let the homogeneous system of linear equations $px + y + z = 0$, $x + qy + z = 0$, and $x + y + rz = 0$, where $p, q, r \neq 1$, have a non-zero solution, then the value of $\frac{1}{1-p} + \frac{1}{1-q} + \frac{1}{1-r}$ is
a) -1 b) 0 c) 2 d) 1

19. If
$$A = \begin{bmatrix} 1 & \tan\frac{\theta}{2} \\ -\tan\frac{\theta}{2} & 1 \end{bmatrix}$$
 and $AB = I$, then *B* is equal to
a) $\cos^2\frac{\theta}{2} \cdot A$ b) $\cos^2\frac{\theta}{2} \cdot A^T$ c) $\cos^2\theta \cdot I$ d) $\sin^2\frac{\theta}{2} \cdot A$

20. The values of x, y, z in order, if the system of equations 3x + y + 2z = 3, 2x - 3y - z = -3, x + 2y + z = 4 has unique solution, are